找回密碼註冊
作者: lin.sinchen
查看: 3138
回復: 0

文章標籤:

文章分享:

+ MORE精選文章:

    + MORE活動推薦:

    SAMSUNG T7 Shield 移動固態硬碟

    [*]超快的移動固態硬碟,比傳統外接 HDD 快 9.5 倍 [*]堅固的儲存 ...

    GEX PRO 850W玩家開箱體驗分享活動

    卓越性能,超值選擇 GEX PRO 系列通過 80 PLUS 金牌認證,實現高達 ...

    體驗極速WiFi 7!MSI Roamii BE Lite Mesh

    第一名 guanrung1110 https://www.xfastest.com/thread-293988-1- ...

    極致效能 為遊戲而生 990 PRO SSD 玩家體驗

    [*]極致效能固態硬碟 [*]PCIe 4.0 速度大幅提升 [*]優化的電源效率 ...

    打印 上一主題 下一主題

    [業界新聞] 峰值訓練:Blackwell 提供更高水準的 MLPerf 訓練效能

    [複製鏈接]| 回復
    跳轉到指定樓層
    1#


    使用文字、電腦程式碼、蛋白質鏈、摘要、影片甚至 3D 圖形的生成式人工智慧(AI)應用需要資料中心規模的加速運算,才能有效率地訓練驅動這些應用的大型語言模型(LLM)。

    在 MLPerf Training 4.1 基準測試中,NVIDIA Blackwell 平台在所有測試中的工作負載方面都取得了令人印象深刻的結果,並且在大型語言模型基準測試中,每個GPU 的效能最高提升了2.2 倍,包括 Llama 2 70B 和 GPT-3 175B 預訓練。

    此外,NVIDIA 在 NVIDIA Hopper 平台上提交的內容繼續保持所有基準測試的大規模記錄,其中包括在 GPT-3 175B 基準測試中提交的 11,616 個 Hopper GPU。

    Blackwell 的跨越式進展

    首次向 MLCommons 聯盟提交的Blackwell訓練結果,凸顯了該架構如何推升生成式 AI 訓練效能。MLCommons 聯盟為產業參與者創建標準化、公正且嚴格的同業審查測試。

    例如,Blackwell 架構包括可更高效利用 Tensor Core 的新核心。核心是最佳化的、專門建構的數學運算,例如矩陣乘法,是許多深度學習演算法的核心。

    Blackwell 擁有更高的每 GPU 運算輸送量,以及更大、更快的高頻寬記憶體,使其能夠在更少的 GPU 上運行 GPT-3 175B 基準測試,同時實現出色的每 GPU 效能。

    利用更大且頻寬更高的 HBM3e 記憶體,僅需 64 個 Blackwell GPU 就能執行 GPT-3 大型語言模型的基準測試,且不影響每 GPU 的性能。使用 Hopper 執行相同的基準測試,則需要 256 個 GPU。

    Blackwell 的訓練結果延續其先前在 MLPerf Inference 4.1 的提交成果,在該測試中,Blackwell 的大型語言模型推論效能比 Hopper 世代高出最多 4 倍。利用 Blackwell 架構的 FP4 精度以及 NVIDIA QUASAR 量化系統所提交的資料,在滿足基準準確性要求的同時,展示了強大的效能。

    不斷最佳化

    NVIDIA 平台經歷持續的軟體開發,提升了多種框架、模型和應用的訓練與推理效能及功能。

    在這一輪 MLPerf 訓練提交中,Hopper 在 GPT-3 175B 的每 GPU 訓練效能上,提供自基準推出以來 1.3 倍的提升。NVIDIA 也提交了 GPT-3 175B 基準測試的大規模結果,使用 11,616 個 Hopper GPU與 NVIDIA NVLink 和 NVSwitch 高頻寬 GPU 到 GPU 通訊,以及 NVIDIA Quantum-2 InfiniBand 網路連接。

    自去年以來,NVIDIA Hopper GPU 在 GPT-3 175B 基準測試的規模和效能上提升了三倍以上。此外,在 Llama 2 70B LoRA 微調基準測試中,NVIDIA 使用相同數量的 Hopper GPU 將效能提升了 26%,反映出軟體的持續強化。

    NVIDIA 持續致力於最佳化其加速運算平台,從而不斷改進MLPerf 測試結果,提高容器化軟體的效能,為現有平台上的合作夥伴和客戶帶來更強大的運算能力,並提升其平台投資的報酬。

    攜手合作

    NVIDIA 的合作夥伴,包括華碩、Azure、思科、戴爾科技集團、富士通、技鋼科技、Lambda Labs、聯想集團、Oracle Cloud、雲達科技和美超微等系統製造商和雲端服務供應商,也在本輪 MLPerf 測試中提交了出色的成果。

    作為 MLCommons 的創始成員,NVIDIA 認為業界標準基準測試和基準測試最佳實踐在 AI 運算中的角色至關重要。透過對AI和高效能運算平台進行同業審查、簡化的比較,企業能夠跟上最新的 AI 運算創新,並獲取有助於引導重要平台投資決策的關鍵數據。

    如欲進一步了解最新的 MLPerf 結果,請參閱 NVIDIA 技術部落格
    更多圖片 小圖 大圖
    組圖打開中,請稍候......
    您需要登錄後才可以回帖 登錄 | 註冊 |

    本版積分規則

    小黑屋|手機版|無圖浏覽|網站地圖|XFastest  

    GMT+8, 2024-12-22 17:24 , Processed in 0.115712 second(s), 67 queries .

    專業網站主機規劃 威利 100HUB.COM

    © 2001-2018

    快速回復 返回頂部 返回列表