編輯觀點: 對比以往使用處理器進行運算,採用GPU進行運算可讓企業降低不少成本。
硬件和算法在人工智能領域的作用可以說是各佔一半的,而在芯片層面上,業界幾乎觀點一致——GPU在人工智能深度學習算法上的重要性遠高於CPU,這也就是為何NVIDIA在人工智能領域的風頭甚至蓋過了英特爾。
毫無疑問,GPU是當下訓練深度學習神經網絡最熱門的方法,這種方案已經受到了谷歌、微軟、IBM、豐田以及百度等企業的青睞,因此GPU廠商在最近兩年逐漸成為眾企業膜拜的對象。
作為GPU領域的絕對主導者,NVIDIA最近動作頻頻,今年早些時候公司專為深度神經網絡推出了Tesla P100 GPU,並且發布了基於該GPU的單機箱深度學習超級計算機——NVIDIA DGX-1。
如今這款深度學習超級計算機已經問世,NVIDIA CEO黃仁勳日前將DGX-1交付給了馬斯克創辦的人工智能項目OpenAI,OpenAI會用DGX-1做什麼項目?如何使用?還不得而知,不過我們可以先聊一聊這款深度學習超級計算機到底是什麼?它有什麼牛逼的地方。
深度學習超級計算機是什麼?
黃仁勳曾表示,3000人花費3年時間才研發出來這樣一款DGX-1,深度學習超級計算機研發的難度之大可見一斑。
根據NVIDIA官方的介紹,DGX-1的規格如下:
半精度(FP16) 峰值性能最高可達170 Teraflops;
8 個Tesla P100 GPU 加速器,每顆GPU 16GB 內存;
NVLink Hybrid Cube Mesh (NVLink 混合立方網格);
7TB 固態硬盤DL 高速緩存;
雙萬兆以太網,四路InfiniBand 100Gb 網絡連接;
功耗:3U – 3200W。
因為NVIDIA將這些硬件設計在了一個機箱內,所以DGX-1被稱為單機箱深度學習超級計算機。
Tesla P100有153億個16nm FinFET晶體管,其核心面積達到了610mm²,按照黃仁勳的說法,這款GPU是迄今為止最大的芯片。
DGX-1集成的8個16GB顯存GPU吞吐量相當於250台傳統服務器的水平,其配置的7 TB固態硬盤用於儲存神經網絡訓練的大量原始數據。
除此之外,DGX-1系統還包含一套深度學習軟件,即深度學習GPU訓練系統(DIGITS™),它可用於設計深度神經網絡(DNN),據了解DGX-1可以將深度學習的培訓速度加快75倍,將CPU性能提升56倍。這是什麼樣的概念呢?
英特爾雙路至強系統需要250多個節點和150個小時來訓練Alexnet,而DGX-1只需要一個節點2個小時,後者在性能和節點總帶寬上都有明顯的優勢。當然在性能的提升下,功耗達到了3200W,售價更是高達129000美元。
GPU是唯一選擇嗎?
雖然GPU相比CPU有一定的優勢,但是在FPGA和神經網絡芯片面前,GPU依然要遜色不少。
有研究人員測試,相比GPU,FPGA的架構更靈活,單位能耗下性能更強。深度學習算法在FPGA上能夠更快、更有效地運行,而且功耗也能做到更低。英特爾甚至為此推出了FPGA和CPU的混合芯片架構。
另一個研究方向就是神經網絡芯片,這一領域的代表當屬IBM的TrueNorth和寒武紀的DianNao。根據模擬實驗測試的結果,採用DianNaoYu指令集的寒武紀深度學習處理器相對於x86指令集的CPU有兩個數量級的性能提升;而IBM的Truenorth裡含有54億個低成本晶體管神經突觸芯片,功耗卻低至700毫瓦,在性能以及功耗的優化上都提升到了一個新的高度。
寒武紀神經網絡處理器研究者、中國科學院計算技術研究所研究員陳雲霽表示,“加速芯片是神經網絡芯片的最終形態。”
但是理想很豐滿,現實很骨感!就目前來說,GPU是唯一實現大規模應用的方案,FPGA或者神經網絡芯片想要取代GPU的地位只能說是路漫漫了!
文章來源
|